Changes in the electrical properties of olfactory epithelial cells in the tiger salamander after olfactory nerve transection.
نویسندگان
چکیده
Transection of olfactory nerves causes degeneration of receptor neurons in the olfactory epithelium, followed by generation of new receptor neurons. We have carried out intracellular recordings to document changes in epithelial cell populations during receptor neuron degeneration and regrowth at 1, 2, and 4 weeks following olfactory nerve transection in the salamander. Receptor neurons were greatly reduced in numbers at 1 week, and gradually returned to the normal percentage of intracellular penetrations by 4 weeks. They had a resting membrane potential between -30 and -50 mV and high input resistance, 100 to 600 megohms, characteristically seen in normal epithelium. However, at 1 week, the receptor neurons were able to generate only a single spike in response to injected current, and did not re-acquire their ability to respond repetitively until 4 weeks. Cells with the properties of immature receptor neurons (resting membrane potential between -30 and -50 mV and high input resistance, 100 to 600 megohms, but unable to generate spikes) increased significantly in number in the post-transection period. This correlates with the burst of mitotic activity giving rise to new receptor neurons after nerve transection. Supporting cells changed their properties in the aftermath of transection. One type (A) showed a decrease in resting membrane potential and a small increase in input resistance. A second type (B) showed a very large increase in input resistance. These results imply that the degenerating receptor neurons transmit a signal that leads to changes in the functional properties of the glial-like supporting cells. These may involve changes in the membrane properties or in electrical coupling between cells.
منابع مشابه
Transplantation of Olfactory Mucosa Improve Functional Recovery and Axonal Regeneration Following Sciatic Nerve Repair in Rats
Background: Olfactory ensheathing glia (OEG) has been shown to have a neuroprotective effect after being transplanted in rats with spinal cord injury. This study was conducted to determine the possible beneficial results of olfactory mucosa transplantation (OMT) which is a source of OEG on functional recovery and axonal regeneration after transection of the sciatic nerve. Methods: In this study...
متن کاملExcitable properties of olfactory receptor neurons.
Action potential-generating properties of olfactory receptor neurons in the olfactory epithelium of the salamander, Ambystoma tigrinum, were studied in control animals, and 2 and 4 weeks after olfactory nerve transection. The threshold for impulse generation in response to injected current was extremely low (74 +/- 46 pA). In addition, the discharge frequencies of the receptor neurons were exqu...
متن کاملProtective effect of adult olfactory ensheathing cells against 6-OHDA toxicity in PC-12 cells
Olfactory ensheathing cells (OEC) have been successfully used to stimulate the growth of injured fibers and to promote functional recovery within the injured adult CNS. These cells exhibit functional properties, which are known to be involved in axonal elongation. OEC express high level of growth factors including NGF, GDNF, BDNF and NT-3, which are known to play an important role in nerve rege...
متن کاملProtective effect of adult olfactory ensheathing cells against 6-OHDA toxicity in PC-12 cells
Olfactory ensheathing cells (OEC) have been successfully used to stimulate the growth of injured fibers and to promote functional recovery within the injured adult CNS. These cells exhibit functional properties, which are known to be involved in axonal elongation. OEC express high level of growth factors including NGF, GDNF, BDNF and NT-3, which are known to play an important role in nerve rege...
متن کاملHuman Olfactory Ecto-mesenchymal Stem Cells Displaying Schwann-Cell-Like Phenotypes and Promoting Neurite Outgrowth in Vitro
Strategies of Schwann cell (SC) transplantation to regenerate the peripheral nerve injury involves many limitations. Stem cells can be used as alternative cell sources for differentiation into SCs. Given the high potential of neural crest-derived stem cells for the generation of multiple cell lineages, in this research, we considered whether olfactory ecto-mesenchymal stem cells (OE-MSCs) derive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 5 1 شماره
صفحات -
تاریخ انتشار 1985